义务教育小学数学课程标准2011版

别妄想泡我
854次浏览
2021年03月01日 02:57
最佳经验
本文由作者推荐

-

2021年3月1日发(作者:金刚骷髅岛豆瓣)











小学数学课程标准




2011


年版)



中华人民共和国教育部制定














没有出版社出版



自己打印的


《义务教育数学课程标准(


2011


年版)》< /p>



第一部分



前言



数学是研究数量关系和空间形式 的科学。


数学与人类发展和社会进步息息相关,


随着现


代信息技术的飞速发展,


数学更加广泛应用于社会生产和日常生活的各个 方面。


数学作为对


于客观现象抽象概括而逐渐形成的科学语言与 工具,


不仅是自然科学和技术科学的基础,


< br>且在人文科学与社会科学中发挥着越来越大的作用。特别是


20

< br>世纪中叶以来,数学与计算


机技术的结合在许多方面直接为社会创造价值,推动着 社会生产力的发展。



数学是人类文化的重要组成部分,数学素 养是现代社会每一个公民应该具备的基本素


养。


作为促进学生全 面发展教育的重要组成部分,


数学教育既要使学生掌握现代生活和学习

< br>中所需要的数学知识与技能,


更要发挥数学在培养人的思维能力和创新能力方面的 不可替代


的作用。



一、课程性质



义务教育阶段的数学课 程是培养公民素质的基础课程,具有基础性、普及性和发展性。


数学课程能使学生掌握必 备的基础知识和基本技能,


培养学生的抽象思维和推理能力;


培 养


学生的创新意识和实践能力;


促进学生在情感、


态度与价值观等方面的发展。


义务教育的数


学课程能 为学生未来生活、工作和学习奠定重要的基础。



二、课程基本理念



1


.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性

发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。


2


.课程内容要反映社会的需要、数学的特点,要符合学 生的认知规律。它不仅包括数


学的结果,


也包括数学结果的形成 过程和蕴涵的数学思想方法。


课程内容的选择要贴近学生


的实际 ,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与


结果 的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与


间 接经验的关系。课程内容的呈现应注意层次性和多样性。



3< /p>


.教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学


与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。



数学教学活动,


特别是课堂教学应激发学生兴趣,< /p>


调动学生积极性,


引发学生的数学思


考,


鼓励学生的创造性思维;


要注重培养学生良好的数学学习习惯,


使学生掌握恰当的数学


学习方法。


< /p>


学生学习应当是一个生动活泼的、主动的和富有个性的过程。


认真 听讲、积极思考、动


手实践、自主探索、


合作交流等,都是学习 数学的重要方式。


学生应当有足够的时间和空间


经历观察、实验 、猜测、计算、推理、验证等活动过程。



教师教学应该以学生 的认知发展水平和已有的经验为基础,


面向全体学生,


注重启发 式


和因材施教。


教师要发挥主导作用,


处理好讲授与学生自主学习的关系,


引导学生独立思考、


主动探 索、


合作交流,


使学生理解和掌握基本的数学知识与技能,


体会和运用数学思想与方


法,获得基本的数学活动经验。

< p>


4


.学习评价的主要目的是为了全面了解学生数 学学习的过程和结果,激励学生学习和


改进教师教学。


应建立目 标多元、方法多样的评价体系。


评价既要关注学生学习的结果,也


要重视学习的过程;


既要关注学生数学学习的水平,


也要重视 学生在数学活动中所表现出来


的情感与态度,帮助学生认识自我、建立信心。

< p>


5


.信息技术的发展对数学教育的价值、目标、 内容以及教学方式产生了很大的影响。


数学课程的设计与实施应根据实际情况合理地运用 现代信息技术,


要注意信息技术与课程内


容的整合,

< p>
注重实效。


要充分考虑信息技术对数学学习内容和方式的影响,

< p>
开发并向学生提


供丰富的学习资源,


把现代信息技 术作为学生学习数学和解决问题的有力工具,


有效地改进


教与学 的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。



三、课程设计思路



义务教育阶段数学 课程的设计,


充分考虑本阶段学生数学学习的特点,


符合学生的 认知


规律和心理特征,


有利于激发学生的学习兴趣,

< p>
引发学生的数学思考;


充分考虑数学本身的


特点, 体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,


使学 生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。



按以上思路具体设计如下。



(一)



学段划分



为了体现义务教育数学课程 的整体性,


本标准统筹考虑九年的课程内容。


同时,

< p>
根据学


生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一 学段(


1


~


3


年级)、第


二学段(


4


~


6


年级)、第三学段(


7


~


9


年级)。



(二)



课程目标



义务教育阶段数学课程目标 分为总目标和学段目标,


从知识技能、


数学思考、


问题解决、


情感态度等四个方面加以阐述。



数学课程目标包括结果目标和过程目标。结果目标使用“了解”“理解”“掌握”


“运


用”等行为动词表述,过程目标使用“经历”“体验”“探索”等行为动 词表述(行为动词


解释见附录


1


)。< /p>



(三)



课程内容



在各学段中,


安排了四个部分的课程内容:


“数与代数”


“图形与 几何”


“统计与概率”


“综合与实践”。其中,


“综合与实践”内容设置的目的在于培养学生综合运用有关的知识


与方法解决实 际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,


提高学生解 决现实问题的能力。



“数与代数”


的 主要内容有:


数的认识,


数的表示,


数 的大小,


数的运算,


数量的估计;


字母 表示数,代数式及其运算;方程、方程组、不等式、函数等。



“图形与几何”


的主要内容有:


空间和平面基本图形的认识,< /p>


图形的性质、


分类和度量;


图形的平移、 旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的


位置和运动 。



“统计与概率”


的主要内容有:< /p>


收集、


整理和描述数据,


包括简单抽样、


整理调查数据、


绘制统计图表等;处理数据,包括计算平均数、 中位数、众数、方差等;从数据中提取信息


并进行简单的推断;简单随机事件及其发生的 概率。



“综合与实践”


是一类以问题 为载体、


以学生自主参与为主的学习活动。


在学习活动中,


学生将综合运用“数与代数”“图形与几何”


“统计与概率”等知识 和方法解决问题。


“综


合与实践”


的教 学活动应当保证每学期至少一次,


可以在课堂上完成,


也可以课 内外相结合。


提倡把这种教学形式体现在日常教学活动中。


< /p>


在数学课程中,应当注重发展学生的


数感、符号意识、空间观念、 几何直观、数据分


析观念、运算能力、推理能力和模型思想。


为 了适应时代发展对人才培养的需要,数学课


程还要特别注重发展学生的

< br>应用意识



创新意识




数感


主要是指关于数与数量、


数量关系、


运算结果估计等方面的感悟。


建立数感有助 于


学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

< br>


符号意识


主要是指能够理解并且运用符号表示数、


数量关系和变化规律;


知道使用符号


可以进 行运算和推理,


得到的结论具有一般性。


建立符号意识有助于学 生理解符号的使用是


数学表达和进行数学思考的重要形式。


< /p>


空间观念


主要是指根据物体特征抽象出几何图形,


根据几何图形想象出所描述的实际物


体;


想象出物体的 方位和相互之间的位置关系;


描述图形的运动和变化;


依据语言 的描述画


出图形等。



几何直观


主要是指利用图形描述和分析问题。


借助几何直观可以把复杂的数学问 题变得


简明、


形象,有助于探索解决问题的思路,预测结果。几 何直观可以帮助学生直观地理解数


学,在整个数学学习过程中都发挥着重要作用。



数据分析观念


包括:


了解在现实生活中有许多问题应当先做调查研究,


收集数据,


通过


分析做出判断,


体会数据中蕴涵着信息;

< br>了解对于同样的数据可以有多种分析的方法,


需要


根据问 题的背景选择合适的方法;


通过数据分析体验随机性,


一方面对 于同样的事情每次收


集到的数据可能不同,


另一方面只要有足够 的数据就可能从中发现规律。


数据分析是统计的


核心。



运算能力


主要是指能够根据法则和运算律正确 地进行运算的能力。


培养运算能力有助于


学生理解运算的算理, 寻求合理简洁的运算途径解决问题。



推理能力


的发展应贯穿于整个数学学习过程中。


推理是数学的基本思维方式,

< p>
也是人们


学习和生活中经常使用的思维方式。


推理 一般包括合情推理和演绎推理,


合情推理是从已有


的事实出发,


凭借经验和直觉,


通过归纳和类比等推断某些结果;

< p>
演绎推理是从已有的事实


(包括定义、公理、定理等)和确定的规则(包括 运算的定义、法则、顺序等)出发,按照


逻辑推理的法则证明和计算。在解决问题的过程 中,两种推理功能不同,相辅相成:合情推


理用于探索思路,发现结论;演绎推理用于证 明结论。



模型思想


的建立是学生体会 和理解数学与外部世界联系的基本途径。


建立和求解模型的


过程 包括:


从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、


函数


等表示数学问题中的数量关系和变化规律,


求出结果并讨论结果的意义。


这些内容的学习有


助于学生初步 形成模型思想,提高学习数学的兴趣和应用意识。



应用意识< /p>


有两个方面的含义,


一方面有意识利用数学的概念、


原理和方法解释现实世界


中的现象,


解决现实世界中 的问题;


另一方面,


认识到现实生活中蕴涵着大量与数量和图形


有关的问题,


这些问题可以抽象成数学问题,

< br>用数学的方法予以解决。


在整个数学教育的过


程中都应该 培养学生的应用意识,综合实践活动是培养应用意识很好的载体。


创新意识


的培养是现代数学教育的基本任务,


应体现在数学 教与学的过程之中。


学生自


己发现和提出问题是创新的基础;< /p>


独立思考、


学会思考是创新的核心;


归纳 概括得到猜想和


规律,


并加以验证,


是 创新的重要方法。


创新意识的培养应该从义务教育阶段做起,贯穿数

学教育的始终。




第二部分



课程目标



一、总目标



通过义务教育阶段的数学学习,学生能:



1.


获得适应社会生活和进一步发展所必需的数学的基础知识 、基本技能、基本思想、


基本活动经验。



2.


体会数学知识之间、数学与其他学科之间、数学与生活之 间的联系,运用数学的思


维方式进行思考,增强发现和提出问题的能力、分析和解决问题 的能力。



3.


了解数学的价值,提 高学习数学的兴趣,增强学好数学的信心,养成良好的学习习


惯,具有初步的创新意识和 科学态度。



总目标从以下四个方面具体阐述:






知识技







●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。



●经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图 形与几何的基础


知识和基本技能。



● 经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计


与概 率的基础知识和基本技能。



●参与综合实践活动,积累综合运 用数学知识、技能和方法等解决简单问题的数学活动


经验。


< /p>


●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽


象思维。






数学思




●体会统计方法的意义,发展数据分析观念,感受随机现象。



●在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理< /p>


能力,清晰地表达自己的想法。



●学会独立思考,体会数学的基本思想和思维方式。





●初步学会从数学的角度发现问题 和提出问题,


综合运用数学知识解决简单的实际问


题,增强应用 意识,提高实践能力。






问题解




●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意< /p>


识。



●学会与他人合作交流。



●初步形成评价与反思的意识。



●积极参与数学活动,对数学有好奇心和求知欲。




●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的 意志,建立自信心。



●体会数学的特点,了解数学的价值。



●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。



●形成坚持真理、修正错误、严谨求实的科学态度。






情感态





总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机


整体。


在课程设计和教学活动组织中,


应同 时兼顾这四个方面的目标。


这些目标的整体实现,


是学生受到良 好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。


数学

< p>
思考、


问题解决、


情感态度的发展离不开知识技能 的学习,


知识技能的学习必须有利于其他


三个目标的实现。



二、学段目标



第一学段(


1


~


3

年级)



知识技能



1


.经历从日常生活中抽象出数的过程,理解万以内数的意义,初步认识分数 和小数;


理解常见的量;


体会四则运算的意义,掌握必要的运算 技能,


能准确进行运算;在具体情境


中,能选择适当的单位,进 行简单的估算。



2


.经历从实际物体 中抽象出简单几何体和平面图形的过程,了解一些简单


几何体和常见的平面图形;


感受平移、


旋转、


轴对称现象;


认识物体的相对位置。


掌握初步的测量、识图和画图的技能。



3


.经历简单的数据收集、整理、分析的过程,了解 简单的数据处理方法。



数学思考


< /p>


1


.在运用数及适当的度量单位描述现实生活中的简单现象,以及 对运算结


果进行估计的过程中,


发展数感;

在从物体中抽象出几何图形、


想象图形的运动


和位置的过程 中,发展空间观念。




2

< p>
.能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。



3.


在观察、操作等活动中,能提出一些简单的猜想。


< p>
4


.会独立思考问题,表达自己的想法。



问题解决



1


.能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试


解决。



2


.了解分析问题和解决问题的一些基本方法 ,知道同一个问题可以有不同


的解决方法。


< br>3


.体验与他人合作交流解决问题的过程。



4


.尝试回顾解决问题的过程。



情感态度



1


.对身边与数学有关的事物有好奇心,能参与数学活动。



2< /p>


.在他人帮助下,感受数学活动中的成功,能尝试克服困难。


< /p>


3


.了解数学可以描述生活中的一些现象,感受数学与生活有密切 联系。



4


.能倾听别人的意见,尝试 对别人的想法提出建议,知道应该尊重客观事


实。


< p>
第二学段(


4


~


6


年级)



知识技能



1


.体验从具体情境中抽象出数的过程,认识万以上的数;理解 分数、小数、


百分数的意义,了解负数的意义;掌握必要的运算技能;理解估算的意义; 能用


方程表示简单的数量关系,能解简单的方程。


< p>
2


.探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的


基本特征;


体验简单图形的运动过程,


能在方格纸上画出简单图形运动后的图形,


了解确定物体位置的一些基本方法;掌握测量 、识图和画图的基本方法。



3


.经历 数据的收集、整理和分析的过程,掌握一些简单的数据处理技能;


体验随机事件和事件发 生的等可能性。



4


.能借助计算器解 决简单的应用问题。



数学思考



1


.初步形成数感和空间观念,感受符号和几何直观的作用。



2


.进一步认识到数据中蕴涵着信息,发展 数据分析观念;通过实例感受简


单的随机现象。



3


.在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条< /p>


理的思考,能比较清楚地表达自己的思考过程与结果。



4.


会独立思考,体会一些数学的基本思想。



问题解决



1


.尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解


决。

< p>


2


.能探索分析和解决简单问题的有效方法,了 解解决问题方法的多样性。



3


.经历 与他人合作交流解决问题的过程,尝试解释自己的思考过程。



4


.能回顾解决问题的过程,初步判断结果的合理性。



情感态度



1


.愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。


< br>2


.在他人的鼓励和引导下,体验克服困难、解决问题的过程,相信自己能


够学好数学。



3


. 在运用数学知识和方法解决问题的过程中,认识数学的价值。



4


.初步养成乐于思考、勇于质疑、言必有据等良好品质。


< /p>


第三学段(


7


~


9


年级)



知识技能



1


.体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、


方程、不等式 、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数


量关系和变化规律,掌 握用代数式、方程、不等式、函数进行表述的方法。



2


.探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,


掌握基本的证明方法和基本的作图技能;


探索并理解平面图形的平移、


旋转、



对称;认识投影与视图;探索并理解平面直角 坐标系及其应用。



3


.体验数据收集 、处理、分析和推断过程,理解抽样方法,体验用样本估


计总体的过程;进一步认识随机 现象,能计算一些简单事件的概率。



数学思考



1


.通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型


的思想,建立符 号意识;在研究图形性质和运动、确定物体位置等过程中,进一


步发展空间观念;经历借 助图形思考问题的过程,初步建立几何直观。



2


.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现


象的 特点。



3


.体会通过合情推理探索数 学结论,运用演绎推理加以证明的过程,在多


种形式的数学活动中,发展合情推理与演绎 推理的能力。



4


.能独立思考,体会 数学的基本思想和思维方式。



问题解决



1


.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运


用数学知识和方 法等解决简单的实际问题,增强应用意识,提高实践能力。



2


.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题


方法的多样性,掌握分析问题和解决问题的一些基本方法。


< br>3


.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。



4


.能针对他人所提的问题进行反思,初步形 成评价与反思的意识。



情感态度


< /p>


1


.积极参与数学活动,对数学有好奇心和求知欲。



2


.感受成功的快乐,体验独自克服困难、解决数 学问题的过程,有克服困难的勇气,


具备学好数学的信心。


< /p>


3



在运用数学表述和解决问题的过程中 ,


认识数学具有抽象、


严谨和应用广泛的特点,


体会数学的价值。



4


.敢于 发表自己的想法、勇于质疑、敢于创新,养成认真勤奋、独立思考、合作交流


等学习习惯 ,形成严谨求实的科学态度。



第三部分



课程内容



第一学段(


1~3


年级)





一、数与代数



(一)数的认识



1.


在现实情境中理解万以内数的意义,能认、读、写万以内的数,能用数表示物体的

个数或事物的顺序和位置。



2.


能说出各数位的名称,理解各数位上的数字表示的意义;知道用算盘可以表示多位


数( 参见例


1


)。



3.


理解符号<,=,>的含义,能用符号和词语描述万以内 数的大小(参见例


2


)。



4.


在生活情境中感受大数的意义,并能进行估计(参见例< /p>


3


)。



5.


能结合具体情境初步认识小数和分数,能读、写小数和分数。



6.


能结合具体情境比较两个一位小数的大小,能比较两个同 分母分数的大小。



7.


能运用数表 示日常生活中的一些事物,并能进行交流(参见例


4


)。



(二)数的运算



1.


结合具体情境,体会整数四则运算的意义(参见例


5


)。



2.


能熟练地口算


20


以内的加减法和表内乘除 法,


能口算简单的百以内的加减法和一位


数乘除两位数。



3.


能计算两位数和三位数的加减法,一 位数乘两位数和三位数、两位数乘两位数的乘


法,两位数和三位数除以一位数的除法。< /p>



4


.认识小括号,能进行简单的整数四 则混合运算(两步)。



5.


会进行 同分母分数(分母小于


10


)的加减运算以及一位小数的加减运 算。



6.


能结合具体情境,选择适 当的单位进行简单估算,体会估算在生活中的作用(参见



6< /p>


)。



7.


经历与他人交流各自算法的过程。



8.


能运用数及数的运算解决生活中的简单问题,并能对结果 的实际意义作出解释(参


见例


7


)。< /p>




(三)常见的量



1.


在现实情境中,认识元、角、分,并了解它们之间的关系。



2.


能认识钟表,


了解


24


时记时法;


结合自己的生活经验,


体验时间的长短


(参见例


8





3.


认识年、月、日,了解它们之间的关系。



4.


在现实情境中,感受并认识克、千克、吨,能进行简单的 单位换算。



5.


能结合生活实际,解决与常见的量有关的简单问题。



(四)探索规律



探索简单情景下的变 化规律(参见例


9


、例


10

< p>
)。



二、图形与几何



(一)图形的认识



1.


能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。



2.


能根据具体事物、照片或直观图辨认从不同角度观察到的 简单物体(参见例


11


)。



3.


能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。



4.


通过观察、操作,初步认识长方形、正方形的特征。



5.


会用长方形、正方形、三角形、平行四边形或圆拼图。



6.


结合生活情境认识角,了解直角、锐角和钝角。



7.


能对简单几何体和图形进行分类(参见例


20


)。




(二)测量



1.

< br>结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重


要性。



2.


在实践活动中,体会并 认识长度单位千米、米、厘米,知道分米、毫米,能进行简


单的单位换算,能恰当地选择 长度单位(参见例


12


)。



3.


能估测一些物体的长度,并进行测量。



4.


结合实例认识周长,并能测量简单图形的周长,探索并掌 握长方形、正方形的周长


公式。



5.


结合实例认识面积,体会并认识面积单位厘米


2



分米


2


< br>米


2



能进行简单的单位换


算。



6.


探索 并掌握长方形、正方形的面积公式,


会估计给定简单图形的面积


(参见例


13


)。



(三)图形的运动



1.

< p>
结合实例,感受平移、旋转、轴对称现象(参见例


14

)。



2.


能辨认简单图形平移 后的图形(参见例


15


)。



3.


通过观察、操作,初步认识轴对称图形。




(四)图形与位置



1.


会用上、下、左、右、前、后描述物体的相对位置。



2.


给定东、南、西、北四个方向中的一个方向,能辨认其余 三个方向,知道东北、西


北、东南、西南四个方向,会用这些词语描绘物体所在的方向( 参见例


16


)。



三、统计与概率



1.


能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类

标准的关系(参见例


17


)。



2.


经历简单的数据收集和整理过程,了解调查、测量等收集 数据的简单方法,并能用


自己的方式(文字、图画、表格等)呈现整理数据的结果(参见 例


18


)。



3.


通过对数据的简单分析,体会运用数据进行表达与交流的 作用,感受数据蕴涵信息


(参见例


19


)。



四、综合与实践



1


.通过实践活动,感受数学在日常生活中的作用,体验运用所学的知识和方 法解决简


单问题的过程,获得初步的数学活动经验。



2.


在实践活动中,了解要解决的问题和解决问题的办法。



3.


经历实践操作的过程,进一步理解所学的内容 。



(参见例


20

、例


21


、例


22





第二学段(

< p>
4~6


年级)



一、数与代数



(一)数的认识



1.


在具体情境中,认识万以上的数,了解十进制计数法,会用万、亿为单位表示大数。

< br>


2.


结合现实情境感受大数的意义,并能进行估计( 参见例


23


)。



3.


会运用数描述事物的某些特征,进一步体会数在日常生活 中的作用(参见例


24


)。



4.


知道


2



3



5


的倍 数的特征,了解公倍数和最小公倍数;在


1~100


的自然数中 ,能


找出


10


以内自然数的所有倍数, 能找出


10


以内两个自然数的公倍数和最小公倍数。

< p>


5.


了解公因数和最大公因数;在

< p>
1~100


的自然数中,能找出一个自然数的所有因数,

< br>能找出两个自然数的公因数和最大公因数。



6.


了解自然数、整数、奇数、偶数、质(素)数和合数。



7.


结合具体情境,理解小数和分数的意义,理解百分数的意 义(参见例


25


);会进行


小数、分数 和百分数的转化(不包括将循环小数化为分数)。



8.


能比较小数的大小和分数的大小。



9


.在熟悉的生活情境中,了解负数的意义,会用负数表示日常生活中的一些量。




(二)数的运算



1


.能计算三位数乘两位数的乘法,三位数除以两位数的除法。



2


.认识中括号,能进行简单的整数 四则混合运算(以两步为主,不超过三步)。



3


.探索并了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法

< br>的分配律),会应用运算律进行一些简便运算。



4


.在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。



5



能分别进行简单的小 数和分数


(不含带分数)


的加、


减、< /p>


乘、


除运算及混合运算


(以


两步为主,不超过三步)。



6

.能解决小数、分数和百分数的简单实际问题。



7.


在具体情境中,了解常见的数量关系:总价


=


单价×数量、路程


=


速度×时间,并能解

决简单的实际问题。



8


.经历与 他人交流各自算法的过程,并能表达自己的想法。



9


.在解决问题的过程中,能选择合适的方法进行估算(参见例


26


、例


27


)。



10


.能借助计算器进行运算,解决简单的实际问题,探索简单的规 律(参见例


28


)。



(三)式与方程



1


.在具体情境中能用字母表示数。



2


.结合简单的实际情境,了解等量关系,并能用字母表示。< /p>



3.


能用方程表示简单情境中的等量 关系(如


3


x


+2


5



2


x


-


x



3< /p>


),了解方程的作用。



4


.了解等式的性质,能用等式的性质解简单的方程。



(四)正比例、反比例



1

< p>
.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。



2


.通过具体情境,认识成正比例的量和成反比例的量。

< p>


3


.会根据给出的有正比例关系的数据在方格纸 上画图,并会根据其中一个量的值估计


另一个量的值(参见例


2 9


)。



4


. 能找出生活中成正比例和成反比例关系量的实例,并进行交流。




(五)探索规律


< br>探索给定情境中隐含的规律或变化趋势(参见例


30


、例


31


)。





二、图形与几何



(一)图形的认识



1


.结合实例了解线段、射线和直线。



2


.体会两点间所有连线中线段最短,知道两点间的距离。



3


.知道平角与周角,了解周角、平角、 钝角、直角、锐角之间的大小关系。



4


.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。



5


.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆 。



6


.认识三角形,通过观察、操作 ,了解三角形两边之和大于第三边、三角形内角和是


180°




7


.认识等腰三角形、等边三角形、 直角三角形、锐角三角形、钝角三角形。



8

< br>.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例


32


)。



9


.通过观 察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱


的展开图。< /p>



(二)测量



1


.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画

30°



45°



60°



90°


角。



2


.探索并掌握三角形、平行四边形和梯形的 面积公式,并能解决简单的实际问题。



3

.知道面积单位:千米


2


、公顷。



4


.通过操作,了解圆的周长与直径的比为定值,掌握圆的周长 公式;探索并掌握圆的


面积公式,并能解决简单的实际问题。



5


.会用方格纸估计不规则图形的面积(参见例


33


)。



6


.通过实例了解体积(包括容积)的意义及度量单位(米


3

、分米


3


、厘米


3


、升、毫


升),能进行单位之间的换算,感受


1



3



1

< p>
厘米


3


以及


1

< p>
升、


1


毫升的实际意义。



7


.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和 表面积以及圆锥体积的


计算方法,并能解决简单的实际问题。



8


.体验某些实物(如土豆等)体积的测量方法(参见例


34


)。




(三)图形的运动



1


.通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴

对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。


< br>2


.通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平 或垂


直方向将简单图形平移,会在方格纸上将简单图形旋转


90 °


(参见例


35


)。

< br>


3


.能利用方格纸按一定比例将简单图形放大或缩小。



4


.能从平移、旋转和轴对称的角度 欣赏生活中的图案,并运用它们在方格纸上设计简


单的图案。




(四)图形与位置



1


.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换 算。



2


.能根据物体相对于参照点的 方向和距离确定其位置。



3


.会描述 简单的路线图(参见例


36


)。



4


.在具体情境中,能在方格纸上用数对(限于正整数)表示位置, 知道数对与方格纸


上点的对应(参见例


37

)。





三、统计与概率



(一)简单数据统计过程



1


.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。



2


.会根据实际问题设计简单的调查表,能选择适当的方法(如 调查、试验、测量)收


集数据。



3< /p>


.认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观且


有效地表示数据(参见例


38


)。

< p>


4



体会平均数的作用 ,


能计算平均数,


能用自己的语言解释其实际意义


(参见例


38





5


.能从报纸杂志、电视等媒体中,有意识地 获得一些数据信息,并能读懂简单的统计


图表(参见例


39


)。



6


.能解释 统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例


38


、例


40


)。



(二)随机现象发生的可能性



1


.在具体情境中,通过实例感受简单的随机现象;能列出简单的随机现象中所有可能


发生的结果(参见例


41


)。

< br>


2


.通过试验、游戏等活动,感受随机现象结果发生的 可能性是有大小的,能对一些简


单的随机现象发生的可能性大小作出定性描述,并能进行 交流(参见例


41


)。





四、综合与实践



1.


经历有目的、有设计、有步骤、有合作的实践活动。



2


.结合实际情境,体验发现和提出问题、分析和解决问题的过程。



3



在给定目标 下,


感受针对具体问题提出设计思路、


制定简单的方案解决问题 的过程。



4.


通过应用和反思,进 一步理解所用的知识和方法,了解所学知识之间的联系,获得


数学活动经验。

< p>


(参见例


42


、例


43


、例


44


、例


45


、例


46




第四部分



实施建议



一、教学建议



教学活动是师生积极参与、交往互动、共同发展的过程。



数学教学应根据具体的教学内容,


注意使学生在获得间接经验的同时 也能够有机会获得


直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境, 引导学生通过实践、


思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、 基本活动经验,促使学


生主动地、


富有个性地学习,

< p>
不断提高发现问题和提出问题的能力、


分析问题和解决问题的


能力。



在数学教学活动中,


教师要把基本理念转化为自己的教学行为,


处理好教师讲授与学生

自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引

< br>导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极


开发、


利用各种教学资源,为学生提供丰富多彩的学习素材;

< br>关注学生的个体差异,有效地


实施有差异的教学,


使每个 学生都得到充分的发展;


合理地运用现代信息技术,


有条件的地


区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。


(一)



数学教学活动要注重课程目标的整体实现







为使每个学生都受到良好的数学教育,


数学教学不仅要使学生获得数 学的知识技能,



且要把知识技能、数学思考、问题解决、


情感态度四个方面目标有机结合,


整体实现课程目

< br>标。



课程目标的整体实现需要日积月累。


在日常的教学活动中,


教师应努力挖掘教学内容中


可 能蕴涵的、


与上述四个方面目标有关的教育价值,


通过长期的教 学过程,


逐渐实现课程的


整体目标。因此,无论是设计、实施课 堂教学方案,还是组织各类教学活动,不仅要重视学


生获得知识技能,

< br>而且要激发学生的学习兴趣,


通过独立思考或者合作交流感悟数学的基本


思想,


引导学生在参与数学活动的过程中积累基本经验,


帮助学生形成认真勤奋、


独立思考、


合作交流、反思质 疑等良好的学习习惯。



例如,


关于< /p>


“零指数”


教学方案的设计可作如下考虑:教学目标不仅要包括了 解零指数


幂的“规定”、会进行简单计算,还要包括感受这个“规定”的合理性,并在这 个过程中学


会数学思考、感悟理性精神(参见例


80

< p>
)。





(二)重视学生在学习活动中的主体地位


有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,


促进学 生


的全面发展。



1.


学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。



学生获得知识,


必须建立在自己思考的基础上,


可以通过接受学习的方式,


也可以通过


自主探索等方式;


学生应用知识并逐步形成技能,


离不开自己的实践;


学生在获得知识技能


的过程中,


只有亲身参与教师精心 设计的教学活动,


才能在数学思考、


问题解决和情感态度


方面得到发展(参见例


81


)。



2.


教师应成为学生学习活动的组织者、引导者、 合作者,为学生的发展提供良好的环境


和条件。



教师的


“组织”


作用主要体现在两个方面:第一,< /p>


教师应当准确把握教学内容的数学实


质和学生的实际情况,


确定合理的教学目标,


设计一个好的教学方案;


第二,


在教学活动中,


教师要选择适当的教学方式,因势利导 、适时调控、努力营造师生互动、生生互动、生动活


泼的课堂氛围,形成有效的学习活动 。



教师的“引导”作用主要体现在:通过恰当的问题,或者准 确、清晰、富有启发性的讲


授,引导学生积极思考、求知求真,激发学生的好奇心;通过 恰当的归纳和示范,使学生理


解知识、掌握技能、积累经验、感悟思想;能关注学生的差 异,用不同层次的问题或教学手


段,引导每一个学生都能积极参与学习活动,提高教学活 动的针对性和有效性。



教师与学生的“合作”主要体现在:< /p>


教师以平等、


尊重的态度鼓励学生积极参与教学活


动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。



3.


处理好学生主体地位和教师主导作用的关系。

< br>


好的教学活动,


应是学生主体地位和教师主导作用的和 谐统一。


一方面,


学生主体地位


的真正 落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,


是学 生能够真正成为学习的主体,得到全面的发展(参见例


31


、例


51


)。



实 行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。


教师富有启发性的


讲授;


创设情境、


设计问题,


引导学生自主探索、


合作交流;


组织学生操作实验、


观察现象、


提出猜想、


推理论证等,< /p>


都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学


习。





(三)注重学生对基础知识、基本技能的理解和掌握



“知识技能”既是学生发展的基础性目标,又是落实“数学思考”


“问题 解决”


“情感


态度”目标的载体。


< /p>


1.


数学知识的教学,应注重学生对所学知识的理解,体会数学知 识之间的关联。



学生掌握数学知识,


不能依赖死记硬背,


而应以理解为基础,


并在知识的应用中不断 巩


固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联 系、


与学生学科知识的联系,


组织学生开展实验、


操作、


尝试等活动,


引导学生进行观察、

< p>
分析,


抽象概括,


运用知识进行判断。

< p>
教师还应揭示知识的数学实质及其体现的数学思想,


帮助学


生理清相关知识之间的区别和联系等。



数学知识的教 学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整


体知识的体系中 ,


注重知识的结构和体系,


处理好局部知识与整体知识的关系,


引导学生感


受数学的整体性,


体会对于 某些数学知识可以从不同的角度加以分析、


从不同的层次进行理


解。



2.


在基本技能的教学中,不仅 要使学生掌握技能操作的程序和步骤,还要使学生理解程


序和步骤的道理。例如,


对于整数乘法计算,


学生不仅要掌握如何进行计算,而且要知道相


应的算理;


对于尺规作图,


学生不仅要知道 作图的步骤,


而且要能知道实施这些步骤的理由。


< p>
基本技能的形成,需要一定量的训练,但要适度,


不能依赖机械的重复操作 ,要注重训


练的实效性。


教师应把握技能形成的阶段性,


根据内容的要求和学生的实际,


分层次地落实。




(四)



感悟数学思想,积累数学活动经验



数 学思想蕴涵在数学知识形成、


发展和应用的过程中,


是数学知识 和方法在更高层次上


的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参 与教学活动的过程中,


通过独立思考、合作交流,逐步感悟数学思想。

< br>


例如,


分类是一种重要的数学思想。

< br>学习数学的过程中经常会遇到分类问题,


如数的分


类,图 形的分类,代数式的分类,函数的分类等。在研究数学问题中,常常需要通过分类讨


论解 决问题,


分类的过程就是对事物共性的抽象过程。


教学活动中,


要使学生逐步体会为什


么要分类,


如何 分类,如何确定分类的标准,


在分类的过程中如何认识对象的性质,如何区


别不同对象的不同性质。


通过多次反复的思考和长时间的积累,


使学生逐步感悟分类是一种


重要的思想。学会分类,可以有助于学习新的数学 知识,有助于分析和解决新的数学问题。



数学活动经验的积累 是提高学生数学素养的重要标志。


帮助学生积累数学活动经验是数


学教学的重要目标,


是学生不断经历、


体验各种数学活动过程 的结果。


数学活动经验需要在


“做”的过程和“思考”的过程中 积淀,是在数学学习活动过程中逐步积累的。



教学中注重结合 具体的学习内容,


设计有效的数学探究活动,


使学生经历数学的 发生发


展过程,


是学生积累数学活动经验的重要途径。


例如,


在统计教学中,


设计有效的统计活动,< /p>


使学生经历完整的统计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并


利用这些信息说明问题。


学生在这样的过程中,


不断积累统计活动经验,


加深理解统计思想


与方法。< /p>



“综合与实践”


是积累数学活动经验的 重要载体。


在经历具体的“综合与实践”问题的


过程中,


引导学生体验如何发现问题,


如何选择适合自己完成的问题,


如何把实际问题变成


数学问题,如何设计解决问题的方案,如何选择合作 的伙伴,如何有效地呈现实践的成果,


让别人体会自己成果的价值。

通过这样的教学活动,


学生会逐步积累运用数学解决问题的经


验。





(五)关注学生情感态度的发展








根据课程目标,


广大教师要把落实情感态度的目标作为己任,


努力把情感态度目标有机


地融合在数学教学过程之中。


设计教学方案、


进行课堂教学活动时,


应当经常考虑如 下问题:



如何引导学生积极参与教学过程?



如何组织学生探索,鼓励学生创新?



如何引导学生感受数学的价值?



如何使学生愿意学,喜欢学,对数学感兴趣?



如何让学生体验成功的喜悦,从而增强自信心?



如何引导学生善于与同伴合作交流,


既能理解、尊重他人的意见,

< p>
又能独立思考、


大胆


质疑?



如何让学生做自己能做的事,并对自己做的事情负责?



如何帮助学生锻炼克服困难的意志?



如何培养学生良好的学习习惯?



在教 育教学活动中,


教师要尊重学生,以强烈的责任心,


严谨的治学 态度,


健全的人格


感染和影响学生;


要 不断提高自身的数学素养,


善于挖掘教学内容的教育价值;


要在 教学实


践中善于用本标准的理念分析各种现象,恰当地进行养成教育。

< br>



(六)合理把握“综合与实践”的实施



“综合与实践”


的实施是以问题为载体、


以学生自主参与为主 的学习活动。


它有别于学


习具体知识的探索活动,


更有别于课堂上教师的直接讲授。


它是教师通过问题引领、

< br>学生全


程参与、实践过程相对完整的学习活动。



积累数学活动经验、


培养学生应用意识和创新意识是数学课程的重要目 标,


应贯穿整个


数学课程之中。


“综合 与实践”是实现这些目标的重要和有效的载体。


“综合与实践”的教

学,重在实践、重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视

< br>学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其他学


科、数学内部知识的联系和综合应用。



教师在教学设 计和实施时应特别关注的几个环节是:


问题的选择,


问题的展开 过程,



生参与的方式,学生的合作交流,活动过程和结果的展 示与评价等。



要使学生能充分、自主地参与“综合与实践”活 动,选择恰当的问题是关键。这些问题


既可来自教材,也可以由教师、学生开发。提倡教 师研制、开发、生成出更多适合本地学生


特点的且有利于实现“综合与实践”课程目标的 好问题。



实施“综合与实践”时,教师要放手让学生参与,启 发和引导学生进入角色,组织好学


生之间的合作交流,


并照顾到 所有的学生。教师不仅要关注结果,


更要关注过程,


不要急于< /p>


求成,要鼓励引导学生充分利用“综合与实践”的过程,积累活动经验、展现思考过程、交


流收获体会、激发创造潜能。



在实施 过程中,教师要注意观察、积累、分析、反思,使“综合与实践”的实施成为提


高教师自 身和学生素质的互动过程。



教师应该根据不同学段学生的年龄 特征和认知水平,


根据学段目标,


合理设计并组织实

< p>
施“综合与实践”活动。




(七)教学中应当注意的几个关系



1 .


面向全体学生与关注学生个体差异的关系


< br>教学活动应努力使全体学生达到课程目标的基本要求,


同时要关注学生的个体差异 ,



进每个学生在原有基础上的发展。



对于学习有困难的学生,


教师要给予及时的关注与帮助,


鼓励他们主动参与数学学习活


动,并尝试用自己的方式解决问题、


发表自己的看法,要及时地肯定他们的点滴进步,


耐心


地引导他们分析产生困难或错误的原因,


并鼓励他们自己去改正,

< p>
从而增强学习数学的兴趣


和信心。对于学有余力并对数学有兴趣的学生,教 师要为他们提供足够的材料和思维空间,


指导他们阅读,发展他们的数学才能。



在教学活动中,


要鼓励与提倡解决问题策略的 多样化,


恰当评价学生在解决问题过程中


所表现出的不同水平;


问题情境的设计、


教学过程的展开、


练 习的安排等要尽可能地让所有


学生都能主动参与,


提出各自解决 问题的策略,


并引导学生通过与他人的交流选择合适的策


略,丰 富数学活动的经验,提高思维水平。



2.


“预设”与“生成”的关系




教学方案是教师对教学过程的“预设”,教学方案的形成依赖 于教师对教材的理解、



研和再创造。


理解和钻研教材,


应以本标准为依据,


把握好教材的编写意图和 教学内容的教


育价值;对教材的再创造,集中表现在:


能根据所 教班级学生的实际情况,


选择贴切的教学


素材和教学流程,准确 地体现基本理念和课程内容规定的要求。



实施教学方案,是把 “预设”转化为实际的教学活动。在这个过程中,师生双方的互动


往往会


“生成”


一些新的教学资源,


这就需要教师能够及时把 握,


因势利导,


适时调整预案,


使教学 活动收到更好的效果。



3.


合情推理与演绎推理的关系



推理贯穿于数学教学的始终,


推理能力的形成和提高需要一个长期的 、


循序渐进的过程。


义务教育阶段要注重学生思考的条理性,不 要过分强调推理的形式。



推理包括合情推理和演绎推理。


教师在教学过程中,


应该设计适当的学习活动,

引导学


生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些 结论,发展合


情推理能力;


通过实例使学生逐步意识到,


结论的正确性需要演绎推理的确认,


可以根据学


生的年龄特征提出不同程度的要求。



在第三学段中,


应把证明作为探索活动的自然延续和必要发展,

使学生知道合情推理与


演绎推理是相辅相成的两种推理形式。


“证明”


的教学应关注学生对证明必要性的感受,



证明基本方法的掌握和证明过程的体验。证明命题时,应要求证明过程及其表述符合逻辑,


清晰而有条理(参见例


62


)。此外,还可以 恰当地引导学生探索证明同一命题的不同思路


和方法,进行比较和讨论,激发学生对数学 证明的兴趣,发展学生思维的广阔性和灵活性。



4.


使用现代信息技术与教学手段多样化的关系



积 极开发和有效利用各种课程资源,


合理地应用现代信息技术,


注 重信息技术与课程内


容的整合,


能有效地改变教学方式,


提高课堂教学的效益。有条件的地区,


教学中要尽可能


地使用计算器、


计算机以及有关软件;


暂时没有这种条 件的地区,


一方面要积极创造条件改


善教学设施,另一方面广大 教师应努力自制教具以弥补教学设施的不足。



在学生理解并能 正确应用公式、


法则进行计算的基础上,


鼓励学生用计算器完成 较为繁


杂的计算。课堂教学、课外作业、实践活动中,应当根据课程内容的要求,允许学 生使用计


算器,还应当鼓励学生用计算器进行探索规律等活动(参见例

< br>28


、例


50


)。



现代信息技术的作用不能完全替代原有的教学手段,


其真正价值在于实现原有的教学手


段难以达到甚至达不到的效果。

例如,


利用计算机展示函数图象、


几何图形的运动变化过程 ;


从数据库中获得数据,


绘制合适的统计图表;


利用计算机的随机模拟结果,


引导学生更好地


理解随机 事件以及随机事件发生的概率;


等等。


在应用现代信息技术的同 时,


教师还应注重


课堂教学的板书设计。


必要的板书有利于实现学生的思维与教学过程同步,


有助于学生更好

< br>地把握教学内容的脉络。



二、评价建议



评价的主要目的是全面 了解学生数学学习的过程和结果,激励学生学习和改进教师教


学。


评价应以课程目标和课程内容为依据,


体现数学课程的基本理念,

全面评价学生在知识


技能、数学思考、问题解决和情感态度等方面的表现。



评价不仅要关注学生的学习结果,


更要关注学 生在学习过程中的发展和变化。


应采用多


样化的评价方式,


恰当呈现并合理利用评价结果,


发挥评价的激励作用,


保护学生的自尊心


和自信心。


通过评价得到的信息,


可以了解学生数学学习达到的水平和存在的问题,


帮助教


师进行总结与反思,调整和改进教学内容与教学过程。





(一)基础知识和基本技能的评价



对 基础知识和基本技能的评价,


应以各学段的具体目标和要求为标准,

考查学生对基础


知识和基本技能的理解与掌握程度,


以及在 学习基础知识与基本技能过程中的表现。


在对学


生学习基础知识 和基本技能的结果进行评价时,


应该准确地把握


“了解、


理解、


掌握、


应用”


不同层次的要求。在对学生学习过程进行评价时,应依据“经历、体验、探索”不同层次的


要求,采取灵活多样的方法,定性与定量相结合、以定性评价为主。



每一学段的目标是该学段结束时学生应达到的要求,


教师需要根据学习的进度和 学生的


实际情况确定具体的要求。


例如,


下表是对第一学段有关计算技能的基本要求,


这些要求是


在学 段结束时应达到的,评价时应注意把握尺度,对计算速度不作过高要求。





第一学段计算技能评价要求



学习内容



速度要求



20


以内加减法和表内乘除法口算


< /p>


8


~


10



/




百以内加减法和一位数乘除两位数口算



3


~


4



/




两位数和三位数加减法笔算



2


~


3



/

< p>



两位数乘两位数笔算



1


~


2



/




一位数乘除两位数和三位数笔算



1< /p>


~


2



/




教师应允许学生经过较长时间的努力,随 着数学知识与技能的积累逐步达到学段目标。



在实施评价时, 可以对部分学生采取“延迟评价”


的方式,提供再次评价的机会,使他们


看到自己的进步,树立学好数学的信心。




(二)数学思考和问题解决的评价



数 学思考和问题解决的评价要依据总目标和学段目标的要求,


体现在整个数学学习过程


中。



对数学思考和问题解决的评价应当采 用多种形式和方法,


特别要重视在平时教学和具体


的问题情境中 进行评价。


例如,


在第二学段,


教师可 以设计下面的活动,评价学生数学思考


和问题解决的能力:


< /p>


用长为


50


厘米的细绳围成一个边长为整 厘米数的长方形,怎样才能使面积达到最大?



在对学生进行评价时,教师可以关注以下几个不同的层次:


< /p>


第一,学生是否能理解题目的意思,能否提出解决问题的策略,如通过画图进行尝试;



第二,学生能否列举若干满足条件的长方形,通过列表等形式将其 进行有序排列;



第三,在观察、比较的基础上,学生能否发现 长和宽变化时,面积的变化规律,并猜测


问题的结果;



第四,对猜测的结果给予验证;



第五 ,鼓励学生发现和提出一般性问题,如,猜想当长和宽的变化不限于整厘米数时,


面积何 时最大。



为此,


教师可以根据实际情 况,


设计有层次的问题评价学生的不同水平。例如,设计下


面的 问题:




1


)找出三个满足条件的长方形,记录下长方形的长、宽和面积,并依据长或宽的长


短有序 地排列出来。




2

< br>)观察排列的结果,探索长方形的长和宽发生变化时,面积相应的变化规律。猜测


当长和宽各为多少厘米时,长方形的面积最大。



< p>
3


)列举满足条件的长和宽的所有可能结果,验证猜测。

< br>



4


)猜想:如果不限制长方 形的长和宽为整厘米数,怎样才能使它的面积最大?



教师可以 预设目标:对于第二学段的学生,能够完成(


1




2


)题就达到基本要求,对


于能完成(


3


)(


4


)题的学生,则给予进一步的肯定。



学生解决问题的 策略可能与教师的预设有所不同,教师应给予恰当的评价。



(三)情感态度的评价



情感态度的评 价应依据课程目标的要求,采用适当的方法进行。主要方式有课堂观察、


活动记录、课后 访谈等。



情感态度评价主要在平时教学过程中进行,


注重考查和记录学生在不同方面的表现,



解学 生情感态度的状况及变化。例如,



●主动参与学习活动;



●学习数学的兴趣和自信心;



●克服困难的勇气;



●与他人合作;



●与同伴和老师交流



……



教师可以根据实际情况用灵活多 样的方式记录学生情感态度的情况,


用恰当的方式给学


生以反馈 和指导。



(四)注重对学生数学学习过程的评价



学生在数学学习过程中,


知识技能、


数学思考、


问题解决和情感态度等方面的表现不是


孤立的,


这些 方面的发展综合体现在数学学习过程之中。


在评价学生每一个方面表现的同时,


要注重对学生学习过程的整体评价,


分析学生在不同阶段的表现特征和发 展变化。


评价时应


采取灵活的方式记录、保留和分析学生在不同 方面的表现。例如,



●主动参与学习活动;



●提出问题和分析问题;



●独立思考问题;



●与他人合作交流;



●尝试从不同角度思考问题;



●有条理地表述自己的思考过程;



●倾听和理解别人的思路;



●反思自己思考过程的意识;



……



还可以通过建立成长记录等方式 ,使学生记录和反思学习数学的情况与成长的历程。



(五)体现评价主体的多元化和评价方式的多样化


< p>
评价主体的多元化是指教师、


家长、


同学及学生本 人都可以作为评价者,


可以综合运用


教师评价、


学生自我评价、学生相互评价、家长评价等方式,


对学生的学习情况和教师的教


学情况进行全面的考查。


例如,


每一个 学习单元结束时,


教师可以要求学生自我设计一个


“学


习小结”,用合适的形式(表、图、卡片、电子文本等)归纳学到的知识和方法,学习中的


收获,


遇到的问题,


等等。

< br>教师可以通过学习小结对学生的学习情况进行评价,也可以组织


学生将自己的学习 小结在班级展示交流,


通过这种形式总结自己的进步,


反思自己 的不足以


及需要改进的地方,汲取他人值得借鉴的经验。条件允许时,可以请家长参与评 价。



评价方式多样化体现在多种评价方法的运用,包括书面测 验、口头测验、开放式问题、


活动报告、课堂观察、课后访谈、课内外作业、成长记录等 等(参见例


82


)。在条件允许


的地方 ,


也可以采用网上交流的方式进行评价。


每种评价方式都具有各 自的特点,


教师应结


合学习内容及学生学习的特点,

< p>
选择适当的评价方式。


例如,


可以通过课堂观察了 解学生学


习的过程与学习态度,


从作业中了解学生基础知识与基 本技能掌握的情况,


从探究活动中了


解学生独立思考的习惯和合 作交流的意识,从成长记录中了解学生的发展变化。



(六)恰当地呈现和利用评价结果



评 价结果的呈现应采用定性与定量相结合的方式。


第一学段的评价应当以描述性评价为


主,


第二学段采用描述性评价和等级评价相结合的方式,

< p>
第三学段可以采用描述性评价和等


级(或百分制)评价相结合的方式。



评价结果的呈现和利用应有利于增强学生学习数学的自信心,提高 学生学习数学的兴


趣,使学生养成良好的学习习惯,促进学生的发展。评价结果的呈现,


应该更多地关注学生


的进步,关注学生已经掌握了什么,获得了 哪些提高,具备了什么能力,还有什么潜能,在


哪些方面还存在不足,等等。

< p>


例如,下面是对某同学第二学段关于“统计与概率”学习的书面评语:< /p>



王小明同学,本学期我们学习了收集、整理和表达数据。你通过 自己的努力,能收集、


记录数据,


知道如何求平均数,


了解统计图的特点,制作的统计图很出色,


在这方面表现突


出。但你在使用语言解释统计结果方面还存在一定差距。继续努力,小明!评定等级:


B




这个以定性为主的评语 ,实际上也是教师与学生的一次情感交流。学生阅读这一评语,


能够获得成功的体验,树 立学好数学的自信心,也知道自己的不足和努力方向。



教师要 注意分析全班学生评价结果随时间的变化,


从而了解自己教学的成绩和问题,

< p>


析、反思教学过程中影响学生能力发展和素质提高的原因,寻求改善教学 的对策。


同时,以


适当的方式,将学生一些积极的变化及时反馈 给学生。




(七)合理设计与实施书面测验


-


-


-


-


-


-


-


-