整理百化分公式表_小学数学基础知识整理一到六年级
-
百化分公式表
_
小学
数学基础知识整理一到六年级
整理表
姓
名
:
职业工种
:
申请级别
:
受理机构
:
填报日期
:
小学数学基础知识整理(一到六年级)
小学一年级
九九乘法口诀表。学会基础加减乘。
小学二年级
完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级
学会乘法交换律,几何面
积周长等,时间量及单位。路程计算,分配
律,分数小数。
小学四年级
线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级
分数小数乘除法,代数方
程及平均,比较大小变换,图形面积体积。
小学六年级
比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式
三角形的面积=底
×
高
÷2
。
公式
S= a×h÷2
正方形的面积=边
长
×
边长
公式
S=
a×a
长方形的面积=长
×
宽
公式
S= a×b
平行四边形的面积=底
×
高
公式
S=
a×h
梯形的面积=(上底
+
下底)
×
高
÷2
公式
S=(a+b)h÷2
内角和:三角
形的内角和=
180
度。
长方体的体积=长
×
宽
×
高
公式:
V=abh
< br>长方体(或正方体)的体积=底面积
×
高
公式:
V=abh
正方体的体积=棱长
×
棱长
< br>×
棱长
公式:
V=aaa
圆的周长=直径
×π
公式:
L
=
πd
=
2πr
圆的面积=半径
×
半径
×π
公式:
< br>S
=
πr2
< br>圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:
S=ch
=πdh
=
2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:
S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积
等于底面积乘高。公式:
V=Sh
圆
锥的体积=
1/3
底面
×
积高。公式:
V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的
分
数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1
、加法交换律:两数相加交换加数
的位置,和不变。
2
、加法结合律:
三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。<
/p>
3
、乘法交换律:两数相乘,交换因数
的位置,积不变。
4
、乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第
三个数相乘,它们的积不
变。
5
、乘法分配律:两个数的和同
一个数相乘,可以把两个加数分别同这个数相乘,
再把两个积相加,结果不变。如:(<
/p>
2+4
)
×5
=
2×5+4×5
6
< br>、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不
变
。
O
除以任何不是
< br>O
的数都得
O
。
简便乘法:被乘数、乘数末尾有
O
< br>的乘法,可以先把
O
前面的相乘,零不参加运
算,有几个零都落下,添在积的末尾。
7
、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8
、什么叫方程式?答:含有未知数的等式叫
方程式。
9
、
什么叫一元一次方程式?答:含有一个未知数,并且未知数的次
数是一次的
等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有
χ
的算式并计算。
10
、分
数:把单位
平均分成若干份,表示这样的一份或几分的数
,
叫做分数。
11
、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母
的分数相加减,先通分,然后再加减。
12<
/p>
、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的
分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13
、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14
、分数乘分数,用分子相乘的积
作分子,分母相乘的积作为分母。
15
、分数除以整数(
0
除外),等于分数乘以这个整数的倒数。
16
、真分数:分子比分母小的分数
叫做真分数。
17
、假分数:分子比
分母大或者分子和分母相等的分数叫做假分数。假分数大于或
等于
1
。
18
、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19
、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(
< br>0
除外),分
数的大小不变。
20
、一个数除以分数,等于这个数乘以分数的倒数。
21
、甲数除以乙数(
0
除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1
、单价
×
数量=总价<
/p>
2
、单产量
×
数量=总产量
3
、速度
×
时间=路程
4
、工效
×
时间=工作总
量
5
、加数
+
加数=和
一个加数=和+另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数
×
因数=积
一个因数=积
÷
另一个因数
被除数
÷
除数=商
除数=被除数
÷
商
被除数=商
×
除数
有余数的除法:
被除数=商
×
除数
+
余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这
个数,结果
不变。例:
90÷5÷6
=
90÷
(
5×6
)
6
、
1
p>
公里=
1
千米
<
/p>
1
千米=
1000
米
1
米=
10
分米
1
分米=
10
厘米
1
厘米=
10
毫米
1
平方米=
100
平方分米
1
平方分米
=
100
平方厘米
< br>1
平方厘米=
100
平方毫米<
/p>
1
立方米=
1
000
立方分米
1
< br>立方分米=
1000
立方厘米
1
立方厘米=
1000
立方毫米
1
吨=
1000
千克
1
千克
=
1000
克
=
1
公斤
=
1
市斤
1
公
顷=
10000
平方米。
1
亩=
666.666
平
方米。
1
升=
1
立方分米=
1000
毫升
1
毫升=
1
立方厘米
7
、什么叫比:两个数相除就叫做两个数的比。如:
2÷5
或
3:6
或
1/3
比的前项和后项同时乘以或除以一个相同的数(
0
除外),比值不变。
8
、什么叫比例:表示两个比相等的式子叫做比例。如
3:6
=
9:18
9
、比例的基本性质:在比例里,两外项之积等于两内项之积。
10
、解比例:求比例中的未知项,叫做解比例。如
3:χ
=
9:18
11
、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种
量中
相对应的的比值(也就是商
k
)一
定,这两种量就叫做成正比例的量,它们的关系
就叫做正比例关系。如:
y/x=k( k
一定
)
或<
/p>
kx=y
12
、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量
中相对应
的两个数的积一定,
这两种量就叫做成反比例的量,
它们的关系
就叫做反
比例关系。如:
x×y = k(
k
一定
)
或
k
/ x = y
百分数:表示一个数是另一个数的百分之几的
数,叫做百分数。百分数也叫做百分
率或百分比。
13
、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百
分号。其
实,把小数化成百分数,只要把这个小数乘以
100<
/p>
%就行了。
把百分数化成小数,只要把
百分号去掉,同时把小数点向左移动两位。
14
、
把分数化成百分数,
通常先把分数化成小数
(除不尽时,
通常保留三位小数)
,
再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以
100
%就行了。
把百分数
化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15
、要学会把小数化成分数和把分
数化成小数的化发。
16
、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最
< br>大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫
做最大公约数。)
17
、互质数:
公约数只有
1
的两个数,叫做互质数。
18
、最小公倍数:几个数公有的倍数,叫做这几个数的
公倍数,其中最小的一个叫
做这几个数的最小公倍数。
19
、通分:把异分母分数的分别化成和原来分数相等的同分母的分数
,叫做通分。
(通分用最小公倍数)
20
、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
p>
(约分用最大公约数)
21
、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
< br>个位上是
0
、
2
、
4
、
6
、
8
的数,都能被
2
整除,即能用
2
进行约分。个位上是
0
或
者
5
的数,都能被
5
整除,即能用
5<
/p>
进行约分。在约分时应注意利用。
<
/p>
22
、偶数和奇数:能被
2
整除的数叫做偶数。不能被
2
整除的数叫做奇数。<
/p>
23
、
质数<
/p>
(素数)
:
一个数,
如果只有
1
和它本身两个约数,
这
样的数叫做质数
(或
素数)。
24
、合数:一个数,如果除了
1
和它本身还有别的约数,这样的数叫做合数。
1
不
是质数,也不是合数。
28
、利息=本金
×
利率
×
时间(时间一般以年或月为单位,应与利率的单位相对应)
<
/p>
29
、利率:利息与本金的比值叫做利率。一年的利息与本金的比
值叫做年利率。一
月的利息与本金的比值叫做月利率。
30
、自然数:用来表示物体个数的整数,叫做自然数。
0
也是自然数。
31
p>
、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断
的重复出现,这样的小数叫做循环小数。如
3.
141414
32
、不循环小数:一
个小数,从小数部分起,没有一个数字或几个数字依次不断的
重复出现,这样的小数叫做
不循环小数。
如
3.
141592654
33
、无限不循
环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个
数字依次不断的重复
出现,这样的小数叫做无限不循环小数。如
3.
141592654……
34
、什么叫代数
?
代数就是用字母代替数。
35
、什么叫代数式
?
用字母表示的式子叫做代数
式。如:
3x =ab+c
一般运算规则
1
每份数
×
份数=总数总数
÷
每份数=份数
p>
总数
÷
份数=每份数
2 1
倍数
×
倍数=几倍数几倍数
÷1
倍数=倍数
几倍数
÷
倍数=
< br>1
倍数
3
< br>速度
×
时间=路程路程
÷
速度=时间
路程
÷
时间=速度
4
单价
×
数量=总价总价
÷
单价=数量
总价
÷<
/p>
数量=单价
5
工作效率
×
工作时间=工作总量工作总量
÷
工作效率=工作时间
工作总量
÷
工作
时间=工作效率
6
加数+加数=和和-一个加数=另一个加数
7
被减数-减数=差被减数-差=减数
差+减数=被减数
8
因数
×
因数=积积
÷
一个因数=另一个因数
9
被除数
÷
除数=商被除数
÷<
/p>
商=除数
商
×
除数=被除数
小学数学图形计算公式
1
正方形
C
周长
S
面积
a
边长
周长=边长
×4 C=4a
面积
=
边长
×
边长
S=a×a
2
正方体
V:
体积
a:
棱长
表
面积
=
棱长
×
棱长
×6
S
表
=a×a×6
< br>体积
=
棱长
×
< br>棱长
×
棱长
V=a×a×a
3
长方形
C
周长
S
面积
a
边长
周长
=(
长
+
宽<
/p>
)×2 C=2(a+b)
面积
=
长
×
宽
S=ab
4
长方体
V:
体积
s:
面积
a:
长
b:
宽
h:
高
表面
积
(
长
×
宽<
/p>
+
长
×
高
+
宽
×
高
)×2 S=2(ab+ah+bh)
体积
p>
=
长
×
宽
×
高
V=abh
5
三角形
s
面积
a
底
h
高
面积<
/p>
=
底
×
高
÷2 s=ah÷2
三角形高
=
面积
×2÷
底三角形底
=
面积
×2÷
高
6
平行四边形
s
面积
a
底
h
高
面积<
/p>
=
底
×
高
s=ah
7
梯形
s
面积
a
上底
b
下底
h
高
面积<
/p>
=(
上底
+
下底
)×
高
÷2 s=(a+b)×
h÷2
8
圆形
S
面积
C
周长
∏
d=
直径
r=
半径
周
长
=
直径
×∏=2×∏×
半径
C=∏d=2∏r
面积
=
半径
×
半径
×∏
9
圆柱体
v:
体积
h:
高
s;
底面积
r:
底面半径
c:
底面周长
侧面积
=
底面周长
×
高表面积
=
侧面积
+
底面积
×2
体积
p>
=
底面积
×
高体积
=侧面积
÷2×
半径
10
圆锥体
v:
体积
h:
高
s;
底面积
r:
底面半径