最新人教版小学数学六年级下册课堂同步作业试题及答案(全册)

玛丽莲梦兔
911次浏览
2021年03月03日 08:02
最佳经验
本文由作者推荐

q版小动物-艾弗森语录

2021年3月3日发(作者:他一定很爱你)



人教版小学数学六年级下册课堂同步作业试题



第一单元




1


课时



负数的初步认识



1.


仔细想,认真填。




1


)非洲的最高气温可达零上

58.8


℃,记作


( )


℃;南极洲的最低气温可


达零下


89.2


℃,记作


( )


℃。



1


3



2



-


读作


( )


,正三点二五写作


( )



+


读作


( )




8


5< /p>



3



上海中心 大厦是目前我国的第一高楼,


主体楼共


118

< br>层。


如果把第


5O


层记



O


层,那么第


46< /p>


层应记作


( )


层,最高层


118


层应记作


( )


层。



2.


先算一算,再用正、负数表示出盈利或亏损的金额。


(


盈利记作 “


+



,亏损记


作“


-



)


月份



收入


/




支出


/



< /p>


盈利或亏损的金额


/


< br>



3.


体育课上,小明根据体育老师的指令进行前进或者后退的练习


(

前进用“


+



表示,后退用“


-


”表示


)


。行动 过程表述如下:


+6


步,


-5


步,


-3


步,


+1


步,


+2


步。小明最终前进或者后退了几步


?




参考答案:



1.




1< /p>



+58.8


(或


58.8




-89.2



(2)负八分之一




3.25


正五分之三



(3)


-4



68


(或


68



2.



+19800



11900



2800


3.



前进:


6+1+2=9


(步)



后退:


5+3=8


(步)



9-8=1


(步)




1




54100


34300



2




48500


36600



3




32600


35400








2


课时



用直线上的点表示正、负数



1.



规定向右为正方向,在直线上表 示下列各数,再比较各数的大小。




-6


5.5 -4


1.5 -1.5


-3 0


2.5


-1 -4.5


0


1


2


以上各数表示的点离


0


点最近的是


(





)


,离


0< /p>


点最远的是


(





)




2.




直线上画一画。





1


)以学 校为起点,向东走


400


m


,是小宇家,向西走


300


m


是小欣家。小涵


家在学校西面


500 m


处,


小悦家在学校东面


200 m< /p>


处。


请在直线上分别表示出小


欣家、小涵 家和小悦家的位置。




2

< p>
)如果小亮从学校出发,先去给小宇送书,再向西行


500


m


,请在直线上标


出小亮现在的位置。





< br>3.


春山公园入口在一条东西走向的马路上,公园入口东面


5m



7.5


m

< br>处分别有


一棵杨树和一个安全警示牌,公园入口西面


3m



5.5m


处分别是售票处和非机


动车停放处。请你以公园入口作为


0


点试着 画出题中所描述的场景。














参考答案:



1.



画图略















2.



画图略




3.



画图略



(答案不唯一)



1




6


2


第二单元




1


课时



折扣



1.


商场里的数学。




商场促销,买一件商品打九折,买两件商品打八五折。




1


)李阿姨要买一条裙子,需要多少钱


?





2


)王阿姨买一条裤子和一双鞋子,需要多少钱


?





3


)赵阿姨买一件风衣花了


540


元, 比原价便宜了多少钱


?





4


)张阿姨买了一条丝巾,比原价节省了


12


元。这条丝巾原价多少钱


?





4.< /p>


白云服装店以每套


110


元的价格进了< /p>


50


套春装。


以每套

180


元的价格卖出


60



后,因为天气变化,全部五折出售,并售完。这批春装额外的成本费用约


800


元,请你算一算,店家最后有没有亏本


?











参考答案:



1.




1< /p>



260


×


90 %=234


(元)




2


)(


214+186


)×< /p>


85%=400


×


85%=340


(元)




3



540


÷


90%- 540=60


(元)




4



12


÷(


1-90%



=12


÷


10%=120


(元)



2.



50


×


60%


×


180=5400


(元)


50


×(

1-60%



=20


(套)



20


×(


180< /p>


×


50%



=1 800


(元)


5400+1800=7200


(元)



50


×


110+800=5500+800=6300


(元)



7200


元 >


6300



,


店家最后没有亏本。




2


课时



成数



1.


仔细想,认真填。



1


(


< p>
)



1



=(



)



(



)=( )



=


=


()折


=


()成

< br>


5


10


2


)今年的小麦产量比去年增产三成五,意思是今年的小麦产量比去年增加了


()


%


,即今年的小麦产量相当于去年的()


%




2.< /p>


目前,


A


市地铁总长

260 km



未来五年内计划再建地铁线路


65 km



按照计划,


五 年后该市地铁总长比目前增加几成


?








3.



某地 区去年约有


75000


人参加高考,今年高考人数比去年增加一 成,预计明


年高考人数比今年减少半成。明年该地区预计有多少人参加高考


?







参考答案:



1.




1< /p>



1



5



20



2





二(画线部分答案不唯一)




(2)35 135


2.



65


÷


260=0.25


0.25


也就是二成五。



3.



75000

×(


1+10%


)×(


1-5%< /p>



=75000


×


110%


×


95%=78375


(人 )




3


课时



税率



1.


仔细想,认真填。




1


)税率是


(





)



(





)


的比率。




2


)开元超市九月份的营业额是


36 0


万元,应缴纳营业税


18


万元,税率 是


(





)




2.< /p>


张阿姨的花店按营业额的


5%


缴纳营业税 。


2


月份张阿姨需纳税


1350


元,张阿


姨的花店


2


月份营业额是多少元


?







3.< /p>


国家规定个人出版图书获得稿费的纳税计算方法是:不高于


800


元不纳税;高



800


元又不高于


4000


元的,扣除


800


元后的剩余稿费按照


14%


的 税率缴纳个


人所得税;高于


4000


元 的按照全部稿费的


11.2%


纳税。若张老师获得一笔稿费



并缴纳税款


420


元,张老师的这笔稿费是多少元


?


参考答案:



1.




1< /p>


)应纳税额



各种收入




2



5%


2.



1350


÷


5%=27000


(元)



3.



420


÷


11.2%=3750


(元)



3750


元<


4000



420


÷

14%=3000


(元)



3000+800=3800


(元)




4


课时



利率



1.




大妈购买了


5


年期国债


5


万元,年利率为


4.32 %


。到期时沈大妈可获得本


金和利息共多少钱

< br>?








2.




奶奶 将


30000


元存入银行,定期三年,到期时,赵奶奶从银行取 出本金和


利息共


32475


元。你能算 出三年定期存款的年利率吗


?








3.


爸爸有


8


万元 ,下面是两种理财方式:一种是买银行的


1


年期理财产品,年收


益率为


4%


,每年到期后连本带息继续 买下一年的理财产品;另一种是买


3


年期


国债,年利率为


3.8%



3


年后,两种理财方式的收益各是多少


?


哪种理 财方式的


收益更大


?






参考答案:



1.




5< /p>


万元


=50000



50000


×


5


×


4.32%+50000=10800+50000=60800

< p>
(元)



2.



32475-30000


)÷


30000


÷


3=2475


÷


3 0000


÷


3=2.75%


3.




8


万元< /p>


=80000





1


年期理财产品:



第一年收益:


80000


×


1


×


4%=3200


(元)

< p>


第二年收益:



800 00+3200


)×


1


×


4%=3328


(元)



第 三年收益:



80000+3200+3328


)×


1


×


4%=3461.1 2


(元)



三年共收益:


3200+3328+3461.12=9989.12


(元)




3


年期国债:



80000


×


3.8 %


×


3=9120


(元)



9989.12


元>


91 20



,



1


年期理财产品的收益更大。





5


课时



解决问题



1.


电器城中一款原价


7200


元的电脑搞促销活动。

< p>



1


)现在买这台电脑 能便宜多少元


?








2


)张叔叔用分期付款的方式购买。他选择了分

3


个月还款的方式,还款总额


包括买电脑的费用和分期付款 手续费,手续费为电脑现价的


5%


。张叔叔平均每


月应还款多少元


?







2.



甲、乙、丙三个家电销售处开展 促销活动,同一家电原价相同。赵叔叔如果


要买一台


4200< /p>


元的彩电,在哪个家电销售处买最便宜


?





参考答案:



1.




1< /p>



7200


×(


1-80%



=7200


×

< p>
20%=1440


(元)




2



7200

×


80%=5760


(元)






576 0


×


5%=288


(元)




5760+288


)÷


3=2016


(元)



2.



甲:


4 200-4


×


250=4200-1000=3200


(元)



乙:


4200


×


75%=3150


(元)

< p>


丙:


4200


×


90%-500=3280


(元)



3280


元>


3200


元>


3150



,

在乙家电销售处买最便宜。



第三单元




1


课时


< /p>


圆柱的认识(


1




1.



仔细想,认真填。




1


)圆柱是由(



)个面围成的,圆柱的上、下两个面叫做(


< p>


,圆柱周


围的面


(上、


下底面除外)


叫做


< br>




圆柱的两个底面之 间的距离叫做








2


)下面的图形是圆柱的画“√”


,不是圆 柱的画“×”




< br>2.


转动长方形


ABCD


,生成 下面的两个圆柱。






1


)圆柱甲是以长方形的


( )


边为轴旋转而成的,底面半径是


( )


,高





( )





2< /p>


)圆柱乙是以长方形的


( )


边为轴旋转而成的,底面半径是


( )


,高是


( )







参考答案:



1.




1< /p>



3



底面



侧面






(2)


ⅹ√







2.




1< /p>



AD


(或


BC




4cm



2cm



(2)AB



(CD)



2cm




4cm




2


课时


< /p>


圆柱的认识(


2




1.


仔细想,认真填。




1


)一个圆柱的底面半径是

< br>cm


,高是


5


cm

< p>
,它的侧面展开图是一个长方形,


这个长方形的长是()

< br>cm


,宽是()


cm





2


)一个圆柱的侧 面展开图是一个正方形,这个圆柱的高是


25.12dm


,那么 圆


柱的底面周长是()


dm


,底面直径 是()


dm




2.


一个圆柱的侧面展开图是一个长


31.4


cm


、宽



的长方形,求这个 圆柱的


底面半径。







3.



把一个边长是


62.8 cm


的正方形 铁皮卷成一个最大的圆柱形水桶侧面,


给这个


水桶配一个底面, 这个底面需要多少平方厘米的铁皮


?








参考答案:



1.




1< /p>



18.84



5






(2)25.12



8


2.



当长


31.4 cm


等于圆柱的高时, 圆柱的底面周长


C


=




底面半径


r


=


C


÷π÷


2=12.56


÷


3.14


÷


2=2


cm




当宽



等于圆柱的高时,圆柱的底面周长


C


=31.4 cm





底 面半径


r


=


C


÷π÷


2=31.4


÷


3.14


÷


2=5



cm




3.



62.8


÷


3.14


÷


2=10



cm

< br>)



3.14


×


10


2


=314


< p>
cm






3


课时


< /p>


圆柱的表面积(


1



1.


精挑细选。


(


将正确答案的序号填在括号里


)



1



把一根圆柱形木头锯成两根,

得到的两根圆柱形木头的表面积之和与原来


圆柱形木头的表面积相比()

< p>



A.


增加了






B.


减少了







C.


不变









D.


无法确定




2


)做一个无盖的圆柱形水桶,求至少需用多少铁皮,就是 求水桶的()




A.


底面积






B.


侧面积






C.


表面积






D.


侧面 积


+


一个底面积



3


)一个圆柱的侧面积是


25. 12dm


2


,底面周长是


3.14dm


,它的高是()




A.2dm





B.4dm





C.8dm D.16dm


2.


计算下面各圆柱的表面积。










3.< /p>


祈年殿是北京天坛公园的主要建筑之一,


殿中央有


4


根同样大小的圆柱形


“龙


井 柱”



“龙井柱”的高是


19.2m< /p>


,直径是


1.2 m


。如果把每根



龙井柱



的表面(只


包含侧面)刷一层油漆,粉刷的面积约是多少平方米


?


(得数保留一位小数)






参考答案:



1.




1< /p>



A




2



D






(3)


C


2.




1< /p>



3.14


×


4


2


×


2=100.48



dm


2


< br>


2


×


3.14


×


4


×


15=376.8



dm


2




376.8+100.48=477.28



dm


2





2



12. 56


÷


3.14


÷

2=2



cm


< br>


3.14


×


2


2


×


2=25.12



cm


2




12.46


×


9=113.04



cm


2


< br>


113.04+25.12=138.16



cm


2




3.




3. 14


×


1.2


×


19.2


×


4=3.768


×


19.2


×


4=72.3456


×


4



289.4



m


2





4


课时


< /p>


圆柱的表面积(


2



1


1.


做一个圆柱形无盖铁皮水 桶,高


18dm


,底面直径是高的


,至 少需要多少平


3


方分米铁皮


?


(得数保留整数


)








2.



一根圆柱形木材的底面半径是< /p>


2dm


,高是


26dm

< br>,将它锯成两根同样大小的圆



柱形木材后,其中一根圆柱形木材的表面积是多少平方分米


?








3.


如图 所示,将高都为


1m


,底面半径分别为


1.5m



1m


0.5m


的三个圆柱组成


一个物体,求这个物体的表面积。





参考答案:



1


1.



半径 :


18


×


=6



dm




6


÷


2=3



d m




3


底面 积:


3.14


×


3

×


3=28.26



dm


2




侧面积:


3.14


×


6


×


18=339.12



dm


2




表面积:


28.26+339.12=367.38



dm< /p>


2




根据题意 ,


367.38dm


2


保留整数取


368dm


2




2.




2< /p>


×


3.14


×


2


×(


26


÷


2



+3.14


×


2


2


×


2


=12.56


×


13+12.56


×< /p>


2


=163.28+25.12


=1 88.4



dm


2



3.





2


×


3.14


×


0.5


×


1+2


×


3.14

< br>×


1


×


1+2

< br>×


3.14


×


1.5

< p>
×


1+3.14


×


1.5


2


×


2


=3 .14+6.28+9.42+14.13=32.97



m< /p>


2





5


课时


< /p>


圆柱的体积(


1




1.


求下面各圆柱的体积。









2.


< /p>


为了美化环境,富民小区在楼前的空地上建了


5

< br>个同样大小的圆柱形花坛,


花坛的底面内直径为


4m


,高为


0.7 m


。如果每个花坛里面填土的高度为


0.5 m




5


个花坛共需要填土多少 立方米


?






3.


< /p>


在长


30cm


、宽


20cm


、高


15crn


的长方体中 挖去一个半径为


5cm


的圆柱的一


半后 得到如图所示的几何体。该几何体的体积是多少


?





参考答案:



1.




1< /p>



3.14


×


3


2


×


11=28.26


×


11=310.86



cm


3





2



3.14


×(


4


÷


2



2


×


8=12.56


×


8=100.48



dm


3




2.




3. 14


×(


4


÷


2



2


×


0. 5


×


5=3.14


×

< br>4


×


0.5


×

< br>5=31.4



m


3

< p>



3.



30


×


20


×


15-3.14


×


5


2


×


30


÷


2=90 00-1177.5=7822.5



cm

3







6


课时


< /p>


圆柱的体积(


2




1.


仔细想,认真填。



(1)



1.8L


果汁 倒入底面半径是


3cm


、高是


10cm


的圆柱形玻璃杯中,最多能倒


满()杯。


(


π取


3)


(2)


一个圆柱形水桶,从里面量,底面半径是


2dm


,高是


5dm


。如果每立方分米


水重


1kg


,这个水桶能盛水()


kg




2.


游乐场有一个长方 体的儿童游泳池,长


18m


,宽


14m


,深


1.2


m


。如果用直径



20cm


的水管向游 泳池里注水,


水流速度按每分钟


80m


计算,


注满这个游泳池


需要多长时间


?


(π取


3









3.


一管鞋油的出口直径为


4mm


,张叔叔每天擦皮鞋都挤出约


20mm< /p>


长的鞋油,


这管鞋油可以用


36


天。


该品牌鞋油推出新包装后,


只是将出口直径 改为了


6mm



鞋油总量没变,


张叔叔每天挤出约


10mm


长的鞋油,


照这样计算,


现在这管鞋油


大约可以用多少天


?















参考答案:



1.




1< /p>



6



(2)


62.8


2.




18


×


14


×


1. 2=252


×


1.2=302.4


(< /p>


m


3




20cm=0.2m


3


×(


0.2


÷


2



2


×


80=0.03


×


80=2.4



m

3




302.4


÷


2.4=126


(分钟)



3.



3.14


×(


4


÷


2



2


×


20


×


36=12.56


×


20


×


36=9043.2



m m


3




3. 14


×(


6


÷


2



2


×


10 =28.26


×


10=282.6


(< /p>


mm


3




9043.2


÷


282.6=32


(天)




7


课时


< /p>


圆柱的体积(


3




1.



一个水瓶内装有水


350mL


,将水瓶倒放时,空余部分的高度为


5cm


。这个水


瓶的容积是多少


?






2.



下图是一根长

< br>2m


的圆柱形空心钢管,每立方厘米钢材重


8g


,这根钢管重多


少千克


?(

结果保留整数


)



< p>
3.


纪念品店加工一种艺术节比赛奖杯。加工时,一个有机玻璃圆柱正好可 以截成


两个这样的奖杯。求一个奖杯的体积。





参考答案:



1.




350mL=350cm


3








6


÷


2=3



cm



< /p>


3.14


×


3


2


×


5=141.3


< br>cm


3



350+141.3=491.3



cm

< br>3



=491.3


< p>
mL




2.




2m=200cm


3.14


×(


8


÷


2



2


×


200-3.14


×(


6


÷


2



2


×


200


=3.14


×


16


×

< br>200-3.14


×


9


×


200


=4396



cm


3




8


×


4396=35168



g





35168g=35.168kg



35kg


3.




3. 14


×(


8


÷


2



2


×(


1 3+17


)÷


2


=50.24


×


30


÷


2


=753.6



cm


3





8


课时



圆锥的认识



1.


写出下面图形各部分的名称。




2.


精挑细选。

(


将正确答案的序号填在括号里


)



1


)下面测量圆锥高的正确方法是


( )






2


)以


( )


为轴,旋转一周所围成的图形是圆锥。



A.


正方形的一条边


B.


直角三角形的斜边



C.


直角三角形的一条直角边


D.


扇形的一条边




3.


将下图中的直角三角形以一条直角边为轴旋转一周,


可以得到一个圆锥,


圆锥


的底面直径和高分别是多少


?






4.



将一 个底面直径是


26cm


、高是


6cm< /p>


的圆锥形木块分成形状、大小完全相同的


两个木块后,表面积比原 来增加了多少平方匣米


?






参考答案:



1.



左上:侧面



左下:底面



右上:高



右下:底面半径



2.




1< /p>



B




2



C


3.




3c m


的直角边为轴转动,


得到圆锥的底面直径为

< br>4


×


2=8


< br>cm




高为

< br>3cm




4cm


的直角边为轴转动,得到圆锥的底面直径为


3


×


2=6



cm


)< /p>


,高为


4cm




4.



26


×


6


÷


2


×


2=156


÷


2


×


2=156



cm

2





9


课时



圆锥的体积



1.


仔细想,认真填。




1


)一个底面积是


51d m


2


、高是


5dm

的圆柱形钢坯能熔铸成()个和它等底等


高的圆锥,每个圆锥的体积是()


dm


3



< p>


2


)把一个圆柱削成一个最大的圆锥,圆锥体积 是圆柱体积的()


,削去部分的


体积是圆锥体积的()


,是圆柱体积的()





3


)向一个高


15cm

< p>
的圆锥形容器中注满水后,再将水全部倒入一个与圆锥形


容器等底等高的圆 柱形容器中,这时圆柱形容器中的水高()


cm





4


)一个棱长为


3dm


的正方体容器装满水后,倒入一个底面积是

9dm


2


的圆锥



形容器里,正好装满,这个圆锥的高是()


dm




2.


一个圆锥形沙堆,底面积是


24m


2


,高是


1.8 m


。用这堆沙子在


8m


宽的公路上



3cm


厚的路面,能铺多少米

< p>
?







3.


< /p>


李大爷将一些玉米堆放在室内的一个墙角


(


如图,墙面与墙面,墙面与地面之


间的夹角均为直角


)


。玉米堆的形状近似


1


个圆锥。测得地面上< /p>


A


点和


B


点到墙


4


角的距离均为


1m

< br>,且这堆玉米的高为


1.2m


。已知每立方米玉米约重< /p>


750 kg


,试


估算这堆玉米的质量。







参考答案:



1


2


1.


< /p>



1



3



85




2




2倍




(< /p>


3



5




4



9 < /p>


3


3


1


2.



×


24


×


1.8=8


×


1.8=14.4



m


3


< br>


3


3cm=0.03m


14 .4


÷


8


÷


0 .03=1.8


÷


0.03=60


(< /p>


m




1


1


3.




3.14


×


1


2


×


1.2


×


×



3


4< /p>


1


1


=3.14


×


1.2


×


×



3


4


=0.314


m


3




0.314


×


750=235.5



kg





第四单元




1


课时



比例的意义



1.

精挑细选。


(将正确答案的序号填在括号里)


< p>


1


)下面的式子中,


( )是比例。



A.6



10=


3


5


B.


1


10



3=1

< p>


30


C.4



3=


1


4



1


3


D.1



5=5



1



2


)能与


1


1


11



12


组成比例 的是()




A.11



12





B.5.5



6.5





C.12



11 D.


1


12



1

< br>11



2.


按要求写比例。




1


)从


12


的因数中任选


4


个组成比例。












2


)请你给


5< /p>



9



15


再配上一个数组成比例。







3.< /p>


先按要求填空,再回答下面的问题。




1


)图中甲、乙两个正方形的边长之比是()

< br>,周长之比是()



这两个比能组成比例吗


?



2


)甲、乙两个正方 形的面积之比是()


,这个比和甲、乙两个


正方形的边长之比能 组成比例吗


?








参考答案:



1.




1< /p>



B




2



C


2.




1< /p>



1



2=6< /p>



12


(答案不唯一)

< br>



2



5



9=15


27


(答案不唯一)



3.




1< /p>



1



2


(或


4



8




1



2


(或


16



32




这两个比能组成比例。



(2)



1



4


(或


16



64




< /p>


这个比和甲、乙两个正方形的边长之比不能组成比


例。

< p>



2


课时



比例的基本性质



1.


仔细想,认真填。




1


)在比例


2.4



7.2=15




45


中,内项是()和()


,外项是( )和()





2


)在一个比例中,两个内项互为倒数,一个外项是


5


,另一个外项是()



6



3


)如果

4


m


=7


n



m



n


≠ 0



,那么,


m



n


=


()∶()

< br>。如果


8


x


=

< br>y


÷


2



x




y



0)


,那么


x



y


=


()∶()




4



15



5=










)∶


1







3.5


∶(











=1. 4



2


2


5


4


2


∶(










=



1
















=



9


0


.


7




< br>)


9


0


.


3






=

































)∶


4.5=0.4



9


4


32



5



3


8=9



24

< br>,如果内项


9


增加


6

< p>
,外项


3


应该增加()才能使比例成立。



2.



根据比例的基 本性质,判断下面各表中相对应的两个量的比能否组成比例,


如果能,把组成的比例写出 来。




3.


已知


A



B



C



D


均大于


0


,根据


A



B


=


()∶()


B



C


=


( )∶()



D



B


=


()∶()





C



A


=


()∶()



A


B


C


D


=


=


=


,把下面比 例补充完整。



4


6

< br>8


10



参考答案:



1.




1< /p>



7.2



15




2.4



45




2




4



3



5



6


1




3



7






8


(或


1



16




5


2


2



0.35



2.4



0.2




5



2 < /p>


5


560


720


7


9


4


.


5< /p>


15


3


10


2.




1



=



=






2



=



=



9


3


10

< p>
4


.


5


15


7


560


720


20


28


5


7



3


)不能组成比例。




4



=


或< /p>


=



5


7


20


28


3.



4



6


(或


2



3






6



8


(或


3



4




10



6


(或


5



3






8



4


(或


2



1





3


课时



解比例



1.



解比例。



1


1


x



14=0.5

< br>∶












0.2 4



3=3



x













x=< /p>


2



5


5


8







1


1


1


1


3


1


0


.


5


0


.


3


< br>=


x



x



=


:


=



9


4


2


12< /p>


4


8


x


1


.


2






2.


< /p>


相同质量的冰和水的体积比是


10



9


。现有


180L


的水,结成冰后的体积是多


少立方分米


?








3.


< /p>


下图是一个山坡的示意图(假定山坡的坡度处处相等)


,如果


M


点距地平面


的高度是

20m


,那么


N


点距地平面的高度 应是多少米


?






参考答案:



1.



x


=35




x


=37.5




x


=


5


9


1


x


=


x


=


x


=2


16


8


2


2.



解:设结成冰后的体积是


x

< br>dm


3



180L=180dm


3




x



180=10



9


9


x


= 180


×


10


9


x


=1800


X


=200


3.




解: 设


N


点距地平面的高度是


x

< p>
m




20



x


=80



50


80


x


=50


×


20


80


x


=1000


x


=12.5



4


课时




正比例



1 .


在下面成正比例关系的两个量后面的括号里画“√”


,反之画 “×”





1


)正方形的边长和周长。


( )



2


)圆的半径和它的面积。


( )



3


)购买同种练习本的数量和总价。


( )



4


)汽车行驶的路程与时间。

< p>
( )



2.


下表是华天冷饮批发超市一段时间内某种雪糕的批发情况。




(1)


写出几组销售额与相对应销售 量的比,并比较比值的大小。






(2)



这个比值表示的意义是什么


?





(3)



雪糕的销售额与销售量成正比例关系吗


?


为什么


?





(4)


在图中描出表示雪糕的销售额 与相对应销售量的点,然后把这些点按顺序连


起来。





参考答案:



1.




1


)√




2


)×




3


)√




4


)×


< /p>


240


300


360

480


540






,


,

4


6


8


5


9


240


300


360


480


540


比值:


=


=


=


=


=60


4


8


5


6


9


2.



< p>
1


)销售额与销售量的比:


2


)这个比值表示一箱雪糕的价格。





3


)雪糕 的销售额和销售量成正比例关系,因为销售额与相对应的销售量的比



值是一定的。




4


)画图略





5


课时



反比例



1.


仔细想,认真填。



小红看一本书,每天看的页数和所用的天数如下表。



每天看的页数



所用的天数



50


4


40


5


20


10


10


20


5


40


1


)表中()和()是两种相关联的量。




2


)这两种相关联的量中 .相对应的两个数的积是()


,这个积表示的是()





3


)由此可知,< /p>


()一定时,


()和()成()比例关系。



2.


某电脑组装车间要完成一批任务,

每小时组装电脑的数量与需要的小时数如下


表。



每小时组装的数量


/




时间


/




30


48


40


36


60


24


80


18



1


)这批组装任务一共是多少台


?






2


)如果用


a


表示每小时组装电脑的数量,< /p>


t


表示完成任务需要的时间,


a



t


成什么比例关系


?


你能写出这个关系式吗


?






3


)如果每小时组装


90


台电脑,完成这批任 务一共需要多少小时


?






3.


有甲 、乙、丙三个相互咬合的齿轮,当甲轮转


5


圈时,乙轮转


7


圈,丙轮转


2


圈, 这三个齿轮的齿数比是()∶()∶()




参考答案:



1.




1< /p>


)每天看的页数



所用的天数




2



200



这本书的总页数



(3)


总页数



每天看的页数



所用的天数





2.


< /p>



1



30


×


48=1440


(台)

< br>



2



a



t


成反比例关系,关系式为:< /p>


at


=1440


3



1440


÷

< br>90=16


(时)



3.



14



10



35



6


课时



比例尺(


1




1.


法国埃菲尔铁塔的总高度约为


32 0m


,画在图纸上是


4cm


。这幅图纸 的比例尺


是多少


?








2.



天安门广场的长为


880 m


,宽为< /p>


500m


,李军在一幅地图上量得天安门广场的

< br>长为


4.4cm


,王明在另一幅地图上量得天安门广场的 长为


1.1cm


,而老师说他们


量得的 数据都对,你能解释原因吗


?







3.< /p>


明德小学校园长


500m


,宽

< p>
200m


。要在长、宽分别为


20cm

< p>


10cm


的纸上画出


它 的平面图,选择的比例尺应小于多少呢


?





参考答案:



1.




图上 距离∶实际距离


=


比例尺




320m=32000cm


4



32000=1



8000


2.




他们在两幅不同的地图上量天安门广场的长,两幅地图的比例尺不同,所得


到的 图上距离也不同。



3.




画满纸的长,图上距离∶实际距离


=


比例尺



500m=50000cm


20



50000=1



2500


画满纸的宽,图上距离∶实际距离


=


比例尺



200m=20000cm


10


∶< /p>


20000=1



2000

< p>
1



2500


的比值小于


1



2000


的比值



选择的比例尺应小于


1



2500





7


课时



比例尺(


2




1.


手表上有一个零件,画在图纸上长


6cm


,这张图纸的比例尺是


50


∶< /p>


1


。你知道


这个零件的实际长度是多少吗


?








2.



在比例尺为

1



10000000


的地图上, 量得甲地到乙地的高速铁路长


6.6


cm


高速铁路上的火车平均运行速度为


210


千米


/


时,从甲地到乙地乘火车大约需几


小时?


(


得数保留一位小数


)









3.< /p>


一块长方形地,


长与宽的比是


7



4



将其按


1



1000


的比例尺 画在图上,


所得


平面图形的周长是


44 cm


。计划在这块地上盖一栋楼,占地面积约是这块地面积


的< /p>


10%


。这栋楼的占地面积大约是多少平方米

?











参考答案:



1.



解:设这个零件的实际长度是< /p>


x


cm




6



x


=50



1


50


x=


6


x=


0.12


2.



解:设甲地到乙地的高速铁路实 际长是


x


cm




6.6



x


=1



10000000


x=


6.6


×


10000000



x=


66000000


66000000cm=660km


660

< br>÷


210



3.1


(时)



3.


< p>
解:设长方形地的实际周长为


x


cm




44



x=


1



1000


x=


44


×


1000


x=


44000


44000cm=440m



440


÷


2=220



m




7


= 140



m




7



4


4


220


×


=80



m




7



4


220


×


140


×


80


×< /p>


10



=1120(


)



8


课时



比例尺(


3




1.


欣欣小区新建的健身广场长


100 m


,宽


50m


,把它画在比例尺是


1



5000


的图


纸上,周长是多少厘米


?







2.



一幅地图,

图上


5cm


表示实际距离


40km



如果实际距离是


184km



图上距离


是多少厘米


?







3.


在一幅比例尺是


1



10000


的地图上,量 得王莉家到学校的距离是


15cm


。在另


一幅比例尺是


1



30000


的地图上,王莉家到学校的图上距离是多少厘米


?















参考答案:



1.



100m=10000cm




10000


×


50m=5000cm




5000


×



2+1


)×


2=6



cm




2.



图上距离∶实际距离

< p>
=


比例尺



40km=4000000cm


5



4000000=1



800000


184km=18400000cm


18400000


×


3.




15


÷


1


=2



cm



< p>
5000


1


=1



cm




5000< /p>


1


=23



cm




800000

1


=150000



cm




10000


1


150000


×


=5



cm




30000



9


课时

< br>


图形的放大与缩小



1.


仔细想,认真填。




1


)一个正方形的边长为


25cm


,如果把它按


1


< p>
5


缩小,边长变为()


cm


;如


果把它按


4


< br>1


放大,边长变为()


m





2


)一个直角 三角形的两条直角边分别为


6cm



9 cm


,如果按()∶()缩小,


两条直角边分别变为

< p>
2cm



3cm



如果按


()



()< /p>


放大,


两条直角边分别变为


36cm



54cm



< /p>



3


)下图中()号图形是①号长方形放 大后的图形,它是按()∶()放大的。


()号图形是①号长方形缩小后的图形,它是按 ()



()缩小的。






4


)一个正方形按


3



1


放大,图形的周长扩大到原周长的()倍,面积扩大到


原面 积的()倍。



2.


按要求画图。


< br>(


1


)画出下面四边形按


1



3


缩小后的图形。





2


) 画出下面三角形按


2



1


放大后的图形。





3.


把一个长


3cm




1cm


的长方形的各边扩大到原 来的


n


倍,


它的周长和面积如


何变化


?


下面说法正确的是

(





)




A.< /p>


周长和面积都扩大到原来的


n




B.


周长扩大到原来的


n


倍,面积扩大到原来的


n


2




C.


周长扩大到 原来的


n


倍,面积扩大到原来的


2


n




D.


周长和面积都不变




参考答案:



1.




1< /p>



5






2



1



3



6






3


)⑤



2



1





1



2




4



3



9


2.





3.



B



10


课时



用比例解决问题



1.


励志面粉厂用


100kg


小麦可以磨出


76kg


面粉。照这样计算,这个面粉厂一次


运进


40t


小麦,可以磨出多少吨面粉?






q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录


q版小动物-艾弗森语录